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ABSTRACT

We study the following problem: given a strongly connected digraph, find a
minimal strongly connected spanning subgraph of it. Our main result is a parallel
algorithm for this problem, which runs in polylog parallel time and uses 0 (n3) pro-
cessors on a PRAM. Our algorithm is simple and the major tool it uses is comput-
ing a minimum-weight branching with zero-one weights. We also present sequen-

tial algorithms for the problem that run in time 0 (m +n -logn).
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1. IntroductionI
The transitive reduction problem for strongly connected digraphs is: given a strongly con-

nected digraph G, find a minimal strongly connected spanning subgraph of it, i.e., a strongly con-

nected spanning subgraph for which the removal of any arc destroys strong connectivity. We are
looking for a minimal subgraph because the problem of finding a minimum subgraph with the

same transitive closure is NP -hard [GJ].

There is an obvious sequential algorithm for solving this problem: scan the arcs one by one;

at step i test if the i -th arc can be removed without destroying strong connectivity. If so, remove

it and update the digraph. This algorithm has complexity 0 ((n +m)2), where n is the number of

vertices of the input graph and m is the number of arcs. A simple modification is to initially

reduce the number of arcs to at most 2n-2 by taking the union of a forward and an inverse

branching (defined below). This reduces the running time to 0 (n 2).

The problem studied here is reminiscent of the well-studied problem of finding a maximal

independent set of vertices in a graph, for which several parallel algorithms have appeared in the

literature ([KW],[Lu],[ABI],[GS]). Two common features are that there is a simple sequential

algorithm for it that seems hard to parallelize and that the related optimization problem

(minimum vs. minimal) is NP -hard.

We can define the following independence relation on the arcs of a strongly connected

digraph, G: a set of arcs is independent if it can be removed without destroying strong connec-

tivity of G. Using this definition, finding a transitive reduction of G is equivalent to removing a

maximal independent sets of arcs from G. A property that sets our problem apart from the maxi-

mal independent set problem is that in our case independence of a set is not guaranteed when

every pair of elements in it is independent.

Our problem can be expressed as the determination of a maximal independent set in an

independence system as defined by Karp, Upfal and Wigderson (KUW]). The problem com-

puted by a "rank oracle" in this case is NP -hard, but an "independence oracle" is easy to compute

in NC. Foilu wing the method described in [KUW] this automatically yields a randomized paral-

lel algorithm that uses a polynomial number of processors and runs in time 0 ('-n logc n) (for

some constant c ).

In this paper we present parallel and sequential algorithms for this problem Our firstp.r-1-

Ic algorithm runs in time 0(log5n) and uses 0(n 3) processors on a CREW PRAM. We then

present an improved implementation of one of the steps in the algorithm that leads to a parallel

algorithm that runs in O(log4n) time with the same processor bound. Both of these algorithms

can be speeded up by a logn factor if we use a CRCW PRAM; we assume here the COMMON

I
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concurrent-write model in which all processors participating in a concurrent write must write the

same value [KR]. The processor bound of 0 (n 3) represents the number of processors needed to

multiply two n by n matrices in 0 (logn) time on a CREW PRAM by the straightforward paral-

lel matrix multiplication algorithm. It is possible that the processor bound can be improved by

using sophisticated techniques for multiplying n by n matrices (see e.g., [CW]); we do not ela-

borate on this.

The major tool that our algorithms use is computing a minimum-weight branching with

zero-one weights. Central to our algorithms is a proof that two suitable applications of this tool

are guaranteed to reduce by half the number of arcs still to be removed. We also present two

sequential algorithms for the problem, each of which runs in time 0 (m +n "logn). This is an

improvement over the straightforward algorithm mentioned above.

The transitive reduction problem is, in some sense, a dual of the minimum strong augmen-

tation problem - add a minimum set of arcs to a digraph to make it strongly connected. A linear

time sequential algorithm was given for this problem by Eswaran and Tajan ([ET]), and a paral-

lel algorithm running in 0 (logn) time with 0 (n 3) processors on a CRCW PRAM was given by

Soroker ([So]).

Our problem extends naturally to general digraphs: given a digraph G, find a minimal span-

ning subgraph of it whose transitive closure is the same as that of G. A sequential algorithm for

this problem in the case that G is acyclic is given in [AGU] and can be parallelized in a straight-

forward manner. Combining it with our algorithms we obtain parallel algorithms (with the same

complexities as stated above) for the transitive reduction problem on general digraphs. We point

out that these parallel algorithms are good with respect to the state of the art, since the problem

solved is at least as hard as testing reachability from one vertex to another in a digraph, and the

best NC algorithm currently known for this requires on the order of M (n) processors, where

M (n) is the number of processors needed to multiply two n by n Boolean matrices in 0 (logn)

time.

We note that the name "transitive reduction" was given to a different problem by Aho,

Garey and Ullman ([AGU]), and should not be confused with our definition. Given a digraph G,

they ask for a digraph with a minimum number of arcs (not necessarily a subgraph of G) whose

transitive closure is the same as that of G. This definition agrees with ours when G is acyclic.

Definitions

Let G be a strongly connected digraph. A forward (inverse) branching rooted at x is a

spanning tree of G in which x has in-degree (out-degree) zero and all other vertices have in-

degree (out-degree) one. A branching is either a forward or an inverse branching. Throughout

this paoer the root. x, will be some (arbitrarily) fixed vertex of the input digraph, and the set of all

I
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branchings will be taken to be only those rooted at x.

An arc, e, is G-redundant (or simply redundant when d%- graph is clear) if G-{e } is

strongly connected. Arc e is G-essential (or essential ) if it is not redundant. Let H be a sub-

f graph of G. Let rM(H) denote the number of G -redundant arcs in H. When H=G we will use

the shorthand r(G).

An H-philic ( H-phobic ) branching in G is one that has the greatest (smallest) number of

arcs in common with H over all branchings (rooted at x) in G.

Our model of parallel computation is the Parallel Random Access Machine (PRAM), which

consists of a collection of independent processing elements communicating through a shared

memory. For a survey on the PRAM model and PRAM algorithms see [KR]

2. The Transitive Reduction Algorithm

Our basic algorithm is based solely on computing philic and phobic branchings. The fol-

lowing lemma explains huw these branchings are computed:

Lemma 0: An H -philic (H -phobic) branching can be computed by a minimum-weight branching

computation with zero-one weights.

Proof: Assign weight 0 (1) to every arc in H and weight 1 (0) to all other arcs. []

Such a minimum-weight branching can be computed in time 0 (log 2n) using 0 (n 3) proces-

sors on a CRCW PRAM by Lovasz's method ([Lo]). On a CREW PRAM, this algorithm runs in

O (log3n) time.

Proposition 1: An arc of G is essential if and only if it is the unique arc crossing some directed

cut of G.

Proposition 2: The union of a forward branching and an inverse branching of G is a strongly

connected spanning subgraph of G.

Proposition 3: Let G' be a strongly connected spanning subgraph of G. Then e is G' -redundant

only if it is G -redundant.

Lemma 1: Let F be a forward branching in G and let I be an F -philic inverse branching in G.

Let G'=F UI. Then the arcs of I-F are all G' -essential.

I
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Proof: Let e l-F. Assume G'-{e I contains some inverse branching, 1'. Then f has one more

arc in common with F than I does (since all branchings have the same number of arcs). But this
contradicts the fact that I is F-philic. Thus G'-(e I contains no inverse branching and is there-

j fore not strongly connected. [

A cut leaving S is the set of arcs extending from S to V(G)-S in a digraph, G, and its car-

dinality is denoted by &c (S'.

Theorem 1 (Edmonds' Branching Theorem ([Ed])):

Let

k =min {SG(S) I xES ,S V(G) J.
Then G contains k arc-disjoint forward branchings (rooted at x).

Lemma 2: For every strongly connected digraph, G, there exists a forward branching, F, of G

such that rG (F )<l1r (G ).

Proof: Let G' be obtained from G by duplicating all essential arcs. Let S be a proper subset of

V (G) containing x. We claim that SG' (S) 2. This is because the cut leaving S must contain at

least one duplicated essential arc of G or at least two redundant arcs (by proposition 1). There-

fore, by theorem 1, there are two arc-disjoint forward branchings in G' (each corresponding to a

branching in G), one of which must contain at most half of the (unduplicated) G-redundant

arcs.[4

Theorem 2: Let R be the set of redundant arcs in G. Let F be an R -phobic forward branching

and let I be an F -philic inverse branching. Let G =F U1J. Then r (C" )< r (G).

Proof: First note that by proposition 2. G' is strongly connected. By lemma 2 and proposition 3,

rG,(F)<rG(F) 'Ar(G). By lemma 1, r(G')=rG,(F). Therefore r(G')< Ar(G). [I

It is an immediate consequence of theorem 2 that the following NC algorithm gives a transitive

reduction of G:

Repeat

(1) R - set of redundant arcs in G

(2) F -- R -phobic forward branching in G

(3) 1 +- F -philic inverse branching in G
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(4) G -F Ul

until R =4

(5) output G (it is a transitive reduction of the input digraph)

By Theorem 2 the repeat loop runs 0 (logn) times, where n is the number of vertices in G. Steps

(2) and (3) are implemented with Lovasz's minimum-weight branching algorithn (lemma 0).

The straightforward implementation of step (1) is to perform a strong connectivity test (transitive

closure) with each vertex of the graph deleted in turn, which requires n -M (n) processors. In the

next section we shall show how to perform this step more efficiently.

3. Efficient Classification of Arcs

In this section we give parallel algorithms to classify the arcs of G as essential or redundant
in poly-log time using only 0 (n 3) processors. In section 3.1 we provide a simple polylog time

parallel algorithm using 0 (n 3) processors. In section 3.2 we provide a faster algorithm using tree

contraction [MR].

3.1. Finding Redundant Arcs Using Minimum Weight Branchings

Let E. () be the set of essential arcs contained in all forward (inverse) branchings. It fol-

lows from proposition 2 that:

Proposition 4: An arc is essential if it is either in Ef or in Ei (or both).

Lemma 3: Let H be a set of arcs containing Ef and let F be an H-phobic forward branching in

G.Then I(F ("H)-Ef I </ IH-Ef I.

Proof: Let G' be obtained from G by duplicating all the arcs in E1 . As in lemma 2, there exist

two arc-disjoint forward branchings in G' (corresponding to branchingf in G), one of which con-

tains at most half the arcs of H-Ef,. []

Therefore Ef (and similarly Ei) can be computed by the following algorithm:

(1)H *--G

!
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repeat steps (2) and (3) FIg ml times

(2) F <-- H -phobic forward branching in G

(3) H +- H -)F

(4) output H (this is the set E)

This algorithm requires logn applications of Lovasz's minimum weight branching algo-

rithm, which runs in 0 (log2n) parallel time on a CRCW PRAM with 0 (n 3) processors. Thus we

can ise this algorithm to find all redundant arcs in O (log3n) parallel time on a CRCW PRAM

with 0(n 3) processors. This in turn leads to a transitive reduction algorithm that runs in

0 (log4n) parallel time on a CRCW PRAM with 0 (n3) processors.

3.2. Finding Redundant Arcs Using Tree Contraction

Let r be a fixed root of a directed graph G=(VE). We call arc (v,w) an out-bridge if

(v,w) is on every path from r to w, and an in-bridge if (v,w) is on every path from v to r. Let O

be the set of out-bridges of G, and I the set of in-bridges of G. Then the set of redundant arcs is

the set E - (I .)O

Let B be a forward branching rooted at r. Then every out-bridge of G lies in B. We can

view B as a rooted directed tree B=(VE' ,r). For a vertex v in V - {r ), we denote by parent(v),

the parent of v in B. A vertex v is active if there is a path from r to v that avoids arc

(parent (v ),v). Similarly, a non-tree arc (w,v) is active if it lies on a path from r to v that avoids

arc (parent (v ),v ).

Lemma 4: Let B=(V,E' ,r) be a forward branching in a directed graph G. A tree arc

e =(parent (v ),v ) in B is an out-bridge of G if and only if v is not active.

Proof: If e is an out-bridge of G then every path from r to v passes through e. Thus v cannot be

active. Conversely, if e is not an out-bridge, then there exists a path from r to v that avoids e

and hence v must be active.[J

We now give an algorithm to identify all active vertices, and hence all out-bridges, using

tree contraction [MR]. An analogous computation on an inverse branching rooted at r gives the

in-bridges, from which we can compute the redundant arcs in G.

We shall use a variant of tree contraction proposed in [Ra] in which the basic operation is

shrink, which we now define. A leaf chain in a rooted tree T=(VE,r) is a path <v1 , - ,vi>

jsuch that each v ,i > has exactly one incoming arc and one outgoing arc in T, vI has either no

suhhtah 1hsadiIaete
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incoming arc or more than one outgoing arc in T, and v is a leaf in T. We will call v 1 the root,

and v, the Le_4 of the leaf chain. Note ,hat every leaf in T is part of a leaf chain, possibly a

degenerate one (if 1=2).

The shrink operation applied to a rooted tree T=(V,E,r) removes all vertices in each leaf

chain in T except the root of the leaf chain. It can be shown that 0 (logn) applications of the

shrink operation suffice to reduce any n -node tree to a single node [Ra].

We now develop an algorithm Shrink(P) for identifying out-bridges for the case when the

forward branching is a simple path. We shall then use this to find the out-bridges in leaf chains

while implementing the shrink operation in a tree contraction algorithm to find out-bridges in G

given an arbitrary forward branching.

$ The input to algorithm Shrink(P) is a directed graph P=(VE) consisting of a directed path

p=<1,2, ••• ,t>, together with a collection of forward arcs of the form (i ,j),i <j, and a collec-

tion of back arcs of the form (i ,j),i >j. The algorithm Shrink(P) will identify all active vertices,

thereby giving the out-bridges in p. Note that P is allowed to have two arcs of the form (i ,i+1),

one of which is a forward arc and the other lies in p. We will need this when we apply algorithm

Shrink(P) to the general problem of finding out-bridges in a graph with an arbitrary forward

branching.

We now make a series of observations.

Observation 1: Every forward arc is active.

Let p (u) be the subgraph of G induced by vertices u through t. For each vertex v in p (u),

let v -- u if u is reachable from v in p (u). Let reach (u) be the set of vertices v in p (u) with

V _-4U.

Observation 2: Reach (u) is a single interval of the form [u ,u' ]. Further a vertex v u is in

reach(u) if and only if there exists a sequence of back arcs bi=(ui ,v),i=l, ,k such that vl=u,

uk >v, and ui >tv +jj = 1, • • ,k-1.

Lemma 5: A vertex u is active if and only if there is a forward arc (k,l) with k <u and I in

reach (u).

Proof: Let u be an active vertex. Then there is a path q from the root to u that avoids arc

(u-l,u). This in turn implies that q must contain a forward arcf =(k,l) with k<u, Il u and with

u reachable from I using only arcs in p (u ). Hence I must be in reach (u).

Conversely suppose there is a forward arc f =(k,l) with k <u and I in reach (u). Hence

there is a path q from I to u using only arcs in p (u). Then the path consisting of arcs in p from

the root to k, followed by arc f and then the path q is a path from 1 to u that avoids arc (u-l u).

Hence u must be an active vertex.[]
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Observations I and 2 and Lemma 5 together give us the following algorithm to find all out-

bridges when the forward branching is a simple path.

Shrink(P);

1 Find reach (u) for each vertex u as follows:

a) For each back arc b=(i ,j) find a back arc next (b)=(i'r) with f in [j ,i] and maximum i'.

If i' <i then set next (b)--.

b) Form an auxiliary graph with a vertex for eazh back arc b and an arc from b to next (b),

if next (b) exists. This auxiliary graph is a forest of trees.

c) For each vertex u, pick some back arc b=(v ,u) incident on u, and find the root b' of the

tree it belongs to. Let b' be the back arc (x ,y). Set reach (u)=[u ,x ].

If there is no back arc incident on u set reach (u)=[u,u].

2. For each vertex u, find a forward arc f -(k ,) with I in reach (u) and with minimum k. If k <u

mark u as active.

3. For each vertex u that is not active, mark (p (u),u) as an out-bridge.

We now show how to implement each of the steps in the algorithm efficiently in parallel.

Step 3 can be implemented trivially in constant time with t processors. The following method

implements step 2 in 0 (logt) time with a number of processors linear in the size of P: Initially

we determine, for each vertex u, the forward arc (v ,u) with minimum v (if such an arc exists). It

is straightforward to compute this in 0 (logt) time with a linear number of processors. Then by a

doubling computation we compute, for each interval [u,u+2J],l:j<Flogt] ,15u<t-2J, the for-

ward arc (vx) with minimum v such that x is in the interval [u,u+2i]. This computation can be

done in 0O(logt) time with a linear number of processors on a CREW PRAM. Any interval

[i ,j ,1<i <j<t can be written as the overlapping union of two of the previously computed inter-

vals, and hence each vertex can now find a forward arc as required in step 2 in constant time.

Step I can be implemented in 0 (logt) time with a linear number of processors on a CREW

PRAM as follows. Step la can be performed in a manner analogous to step 2. Step lb can be

implemented in constant time with a linear number of processors. Step I c can be implemented by

pointer jumping in 0 (logt) time with a linear number of processors. Thus we have a parallel

algorithm for Shrink(P) that runs in 0 (logt) time with a linear number of processors on a CREW

PRAM.

We now incorporate the Shrink algorithm in the following tree contraction algorithm that

finds the out-bridges in an arbitrary forward branching of a directed graph G rooted at r. The

algorithm constructs a sequence of pairs (Gk,Tk), where Gk is a digraph and Tk is a forward

I
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branching; G I is the input digraph and T, is a forward branching of G rooted at a fixed vertex r.

Iteration k identifies the leaf chains of Tk, determines the out-bridges of Gk within those leaf

chains, deletes all the vertices of the leaf chains except their roots, and then performs a transitive

closure computation and adds appropriate arcs to ensure that the out-bridges in Gk+l are precisely

the out-bridges of G not yet identified.

Outbridges(G =(VE,r),T);

Input A directed graph G =(V ,E) with a forward branching T rooted at r; I V I =n.

Repeat

1. Find out-bridges in t. ze leaf chains ofT:

For each leaf chain I in T pardo

Let t be the root of I and t' the leaf of 1. Let L' be the subgmph of G induced by vertices in

I

a) Form L from L' by introducing a forward arc (t,y) for each non-tree arc (x,y) in G with

y in V(1) - (t } and x not in V(l).

b) Apply Shrink(L) to find the out-bridges in L and label these as out-bridges of G

2. Remove leaf chains from T:

a) Form the graph H with vertex set V and arc set the arcs in all leaf chains and all non-tree

arcs of G.
b) Form M, the adjacency matrix of H, and form the transitive closure M* of M.

c) For each vertex v, determine, using M*, the set of vertices from which v is reachable in

H. For each such vertex w, introduce an arc (w,v) in G.

d) For each vertex t that is the head of some leaf chain, delete all incoming non-tree arcs to

proper descendants of t. Collapse all of these proper descendants into t. Delete any self-

loops in this graph.

until T=O

Generalizing our earlier notation for the case when the forward branching is a simple path,

we now let p (u) be the subgraph of G induced by those vertices that lie in the subtrec of T

rooted at u. For each vertex v in p (u), let v -- u if u is reachable from v in p (u). Let reach (u)

be the set of vertices v inp(u) with v--4u.

1
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The following lemma is a straightforward generalization of Observation 2 and Lemma 5

(here a vertex v is a descendant of a vertex u if u =v or if there is a directed path from u to v in

T; otherwise v is a non-descendant of u).

Lemma 6: A vertex u in G is active if and only if there is an arc (x ,y) with x a non-descendant

of u and with y in reach (u).

Let G be a directed graph with a forward branching T rooted at r, and let v be a vertex in

G. An active path to v is a path p from r to v consisting of an initial path p' using tree arcs

from r to a non-descendant x of v followed by an intermediate path consisting of a single non-

tree arc a from x to a descendant y of v followed by a final path p" from y to v using only arcs

connecting descendants of v.

Observation 3: Vertex v is active if and only if there is an active path to v.

We now prove some lemmas that will allow us to establish the correctness of algorithm

Outbridges. As before let Gi and T be the graph and forward branching present at the start of the

i th iteration of the repeat loop in the algorithm; hence G 1 and T, are the input graph together

with its forward branching, and Gk and Tk are the current graph and forward branching at the

start of the k th iteration. Similarly let Hi be the graph H of step 2a of algorithm Outbridges con-

structed in the i th iteration of the repeat loop.

We first note that Observation 2 remains valid in each Gk when u is a vertex in a leaf chain

of Tk . We state this in the following observation.

Observation 4: Let u be a vertex in a leaf chain I of forward branching T, where for conveni-

ence we assume that the vertices in the leaf chain are numbered from 1 to s, with I the root of the

leaf chain and s the leaf of the leaf chain. Then reach (u ) is a single interval of the form [u ,u' ].

Further, a vertex v u is in reach (u) if and only if there exists a sequence of back arcs

bj=(u,,vj),j=l,"-,k in L (where L is the subgraph of G induced by vertices in 1) such that

v1 =u, uk >v and ujVi+l,i =l, ,k-l.

Lemma 7: For each k 1, algorithm Outbridges correctly finds the out-bridges in the leaf chains

of Gk.

Proof: By Observation 4, for a vertex u in a leaf chain I of Tt, reach (u) in Gk is the same as

reach (u) in the subgraph of Gk induced by I. Hence the reach value of each vertex in the leaf

chain is correctly computed in the Shrink computation of step lb in algorithm Outbridges.

By Lemma 6, a vertex u in a leaf chain is active if and only if there is an arc e=(x,y) in Gk

with x a non-descendant of u and with y in reach (u). Such an arc e is either a forward arc in the

leaf chain or is an arc with x not in the leaf chain and y in the leaf chain. The former case is the

same as that used in the Shrink algorithm. In the latter case, (xy) will cause any vertex u in the
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leaf chain with y in reach (u) to be active. Hence for the purpose of the Shrink algorithm this is

equivalent to having an arc from the root, t, of the leaf chain to y. Thus the computation in steps

la and lb of algorithm Outbridges correctly finds the outbridges in the leaf chains of Gk.[]

Lemma 8 Let e =(u ,v) be an out-bridge in Gkk > 1. Then e is an out-bridge in Gk-i.

Proof: First note that if e is an out-bridge ha Gk, then e lies in TA. Hence e lies in TA-1, since

every tree arc in T is present as a tree arc in TA...1

Suppose e is not an out-bridge in Gk-. Hence v is an active vertex in Gk-I. Let p be an

active path to v in Gk-j, and let p consist of an initial tree path p' to a vertex x that is a non-

descendant of v, followed by a non-tree arc a =(x ,y), where y is a descendant of v, followed by a

final path p" from y to v using only arcs connecting vertices that are descendants of v. We now

establish that there must be an active path to v in Gk, contradicting the assumption that e is an

out-bridge of Gk, and thereby establishing the lemma.

If p contains no vertex in Gk--Gk then p is an active path to v in Gk as well. If p contains

some vertices in Gk-t-Gk then consider the last vertex z onp such that z is in GAI-Gk.

Case 1: z is a non-descendant of v. Then z must be x and all vertices in p" lie in Gk. Let t be

the root of the leaf chain of Gk. to which z belongs. Then by step 2d of algorithm Outbridges, z

is collapsed into t and hence the path in Gk consisting of the tree path to t, followed by non-tree

arc (t,y ), followed by path p" is an active path to v in Gk.

Case 2: z is a descendant of v. Let b=(z,a) be the outgoing arc from z in p, and let t' be the root

of the leaf chain in Gk-. to which z belongs. Hence t' is a descendant of a and z is a proper des-

cendant oft'. Let p" be the portion of p" from a to v. The path p.' is a path in Gk as well.

Case 2a: The vertex z is reachable from some non-descendant w of v in Hk. Then an arc (w ,z ) is

introduced in step 2c of the algorithm. If w is in Gk then the path from r to w followed by arc

(w ,a) followed by path p" is an active path to v in Gk. If w is in Gk--Gk then the analysis of

Case I gives an active path to v in Gk.

Case 2b: The vertex z is not reachable from any non-descendant of v in Hk. Now consider p".

This is a path of the form <u ,1, ,uik,,v 11, V , 1 1 , c j, Uck,,Vc,1, ,v,,>, where

the ui,, are in Gk--Gk and the vi,, are in Gk, and ify is in Gk the inital sequence of u1j's is

empty. All of the uij and vi j are descendants of v. Each vij is reachable from v,..,,i >1 in Hk.

Hence by step 2c of algorithm Outbridges, there is an arc from vi-.j,_, to vi,l,i >I in Gk. The ver-

tex v 1.1 has an incoming arc from x in GA. The remaining arcs in p" remain in Gk. Hence there

is a path from x to v in Gk that contains only vertices that are descendants of v in Gk. Hence v is

an active vertex in Gk .[]
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Lemma 9: Let e=(u,v) be a tree arc in Gkk>I that is not an out-bridge in Gk. Then e is not an

out-bridge in Gk-1.

Proof: Since e is not an out-bridge in Gk there is an active path p to v in Gk. Consider any arc

f =(x ,y) in p that is not present in Gk-1. Iff was introduced in step 2c of algorithm Outbridges

then there is a path from x to y in Gk-. that avoids all tree arcs in Gk and hence arc e. Iff was

introduced in step 2d then there is a path from a descendant of x to y in Gk-I that avoids all tree

arcs in Gk. Hence there is a path from x to y in Gk-1 that avoids arc e. Hence from p we can

obtain an active path p' to v in Gk-1. Thus e is not an out-bridge in Gk-,.[]

Lemma 10: Algorithm Outbridges correctly finds the out-bridges of G.

Proof: We show that at the start of each iteration of the repeat loop,

1) The out-bridges identified so far are exactly the out-bridges in the portion of the input graph G

that has been collapsed by the algorithm.

2) An arc e in the current graph G is an out-bridge in this graph if and only if it is an out-bridge

in the original input graph.

The proof is by induction on k, the number of iterations of the repeat loop.

Base: k=l. The claim is vacuously true since no out-bridges have been identified and the input

graph is the same as the current graph.

Induction step: Assume that the two claims are true until the start of iteration k-1 and now con-

sider the start of iteration k. Claim 1) follows by the induction hypothesis and Lemma 7. Claim

2) follows by the induction hypothesis and Lemmas 8 and 9.[]

Finally we note that algorithm Outbridges runs in 0(log2n) with 0(n 3 ) processors on a

CRCW PRAM. To see the orocessor and time bounds let us analyze the time complexity of each

iteration of the repeat loop. By the previous analysis for the time complexity of algorithm Shrink,

step I runs in 0 (logn) time with 0 (n 2) processors on a CREW PRAM. Steps 2a, 2c, and 2d run

in O (logn) time with 0 (n 2 ) processors on a CREW PRAM. Step 2b runs in 0 (logn) time with

0(n 3) proessors on a CRCW PRAM, and is the most expensive step in the repeat loop. Since

the repeat loop is executed 0 (logn) times we obtain the stated time and processor bounds for

algorithm Outbridges. On a CREW PRAM this algorithm runs in 0 (log 3n) time with M (n) pro-
cessors.

Whether we use a CREW model or a CRCW model the time and processor bounds for

finding a minimum weight branching using the algorithm in [Lo] dominate the time and proces-

sor bounds of algorithm Outbridges. Hence we can find redundant arcs within the time and pro-

cessor bounds for minimum weight branchings, and thus the parallel transitive reduction algo-

j rithm runs in 0 (log 3n) parallel time with 0 (n3 ) processors on a CRCW PRAM and in (log 4n)

I
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parallel time with the same processor bound on a CREW PRAM.

4. Sequential Algorithms for Transitive Reduction

As in section 3.2, let r be a fixed root of a directed graph G=(VE), where I V I=n and

I E I =m. An algorithm for finding the in- and out-bridges is given in [Ta2]. This algorithm actu-

ally does more: It computes two forward branchings T1 and T 2 having only the out-bridges in

common, and two inverse branchings, T3 and T 4, having only the in-bridges in common. Thisr

algorithm can be implemented to run in linear time by using linear-time algorithms for comput-

ing nearest common ancestors [HT] and maintaining disjoint sets [GT].

Let R be the set of redundant arcs, I the set of in-bridges and 0 the set of out-bridges.

Hence R =E - (I UO). The following algorithm finds a transitive reduction of G.

1. Pick a root vertex r in G. Find a forward branching B and an inverse branching B' in G and

replace G by B UB'.

2. Repeat

a) Construct two forward branchings T, and T 2 having only the out-bridges in common;

identify the set of out-bridges as 0.

b) Construct two inverse branchings T3 and T 4 having only the in-bridges in common; iden-

tify the set of in-bridges as 1.

c) Form the set of redundant arcs R as R=E-(O Ul).

d) For i =1,2,3,4 form Si =Ti (-R.
e) Choose Ti and T, such that 1/ <Q, 3<j.54 and Sit)Sj has minimum cardina.ty among

SS 3-S 2t)S 3,S I S 4,S 2kJS 4.

f) Replace G by Ti LTj.

until R =4.

The following claim establishes that the repeat loop is executed only 0 (logn) times.

Lemma 11: In step 2e of the algorithm the chosen Si and Sj satisfy IS, t,.Sj I <(3/4). 1 R I.

Proof: For i =1,2,3,4, let Fi be the set of those arcs in Ti that are not present in any other Tj, and

let PI,3=(S I(S3),.FI, P2,4=(S2(r)S4),.F2,P23=(S2I,' S 3)UF 3 and P 1 4=(S]" .S4),F4.

Note that P 1,3,P2 ,4,P 2,3 and P 1 ,4 are disjoint. Let one, say P 1,3 be the one of maximum cardinal-

ity. Then we must have IP 2,4 1+IP 2.31+IPI,4 1<(3/4)IR I. But S2US4 P2,4,JP2,,J)PI,4,
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which implies IS2k.)S41(314) I R 1. Since we also have S IUS3 .P 1,3tP 1,4UjP2.3,

S~t.S4QPI,3.)I,41P2.4 and S2k_)S3P2,3,_)PZ,4JPI,3, we have ISiU.)S 3 1<(3/4)IR I if

P 2,4 is of maximum cardinality, IS I.S4 1:5(3/4)-I R I if P 2,3 is of maximum cardinality and

(I S2IS31 <(3/4)- I R I if P 1.4 is of maximum cardinality. Hence the chosen Si and Sj in step 2e of

the algorithm satisfy I Si IJSj I <(3/4). I R I.]

Step 1 of the algorithm takes 0 (n +m) time and renders G sparse (O(n) arcs). As men-

tioned above, steps 2a and 2b can be implemented to run in 0 (n) time using the algorithm in

[Ta2], in conjunction with the algorithms in [HTI and [GT]. Each of steps 2c through f takes

0 (n) time. Hence each execution of the repeat loop takes linear time. Since by Lemma 11 the

repeat loop is executed O(logn) times, the entire transitive reduction algorithm runs in

0 (m +n logn) time.

The algorithm of section 2 can also be implemented to run in 0 (m +n logn) time. This is

because the minimum-weight branching algorithm of Edmonds [Ed2] can be implemented to run

in linear time for 0-1 edge weights by using the algorithm in [GGST], with the heaps replaced by

two buckets. As before, the redundant arcs can be found in linear time and hence each execution

of the repeat loop takes linear time, leading to an 0 (m +n logn) time sequential algorithm for

transitive reduction.

We have obtained sequential and parallel algorithms with similar complexities for analo-

gous problems on undirected graphs, i.e., for finding a minimal bridge-connected spanning sub-

graph and a minimal biconnected spanning subgraph in an undirected graph, if such subgraphs

exist. These results will appear in a companion paper.

We conclude by noting that it is conceivable that one (or both) of our sequential algorithms

runs in linear time, since it is possible that the repeat loop needs to be executed only a constant

number of times. We leave this question for further investigation. For the same reason it is possi-

ble that our parallel algorithms run faster than the stated time bounds by an 0 (logn) factor.
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